Applicability of Language Models to Fact Checking

George Karagiannis Florian Suri-Payer Himank Yadav

Abstract

Modern information platforms are becoming
increasingly crowd-sourced and editable by
the general public (e.g. Wikipedia) and are
consequently easily affected by large quantities
of false statements. The sheer volume of
information makes it near impossible for humans
to regulate, and thus it is becoming important to
automatically identify inconsistent and factually
false information. However traditional fact check-
ing requires access to large, verified information
stores which is both slow and expensive. Since
language models are trained on such data sets
they potentially implicitly learn factual contexts
that may be leveraged for passive automated
fact-checking. ~We investigate the use of a
Language Model based approach to fact-checking
that is based on computing a heuristic likelihood
of individual facts. We explore 3 state-of-the-art
Language Models across different threshold
models and evaluate the precision and recall over
a small fact update data-set.

1. Motivation

Modern online news and information platforms are increas-
ingly accessible to and editable by the broader public. Open,
and mutable information sources are easily permeated
by large quantities of false statements, compromising
the integrity said source. Given the enormous volume
of information generated online it is nearly impossible
for traditional fact checking methods (human-based, i.e.
Journalists) to keep up. Thus, it is naturally desirable to
develop and employ computational fact-checking tools that
aim to identify and correct inconsistent or factually false
information. Fact checking and Fake News identification
are important emerging research areas that focus on
maintaining veracity when consulting available information
on the web.

A cardinal example for open, mutable information sources
is Wikipedia, ”a free online encyclopedia, created and
edited by volunteers around the world” that verified purely

on a peer-to-peer basis and automatically checked for its
content accuracy. While Wikipedia is nowadays considered
fairly thrust-worthy, due to its large reach and resulting
participation, factual mistakes on the Web are generally
not avoidable and frequently result in frustration using the
sources. There are two fundamental approaches to consider
when developing automated fact checking methods.
An automated tool may follow an active fact-checking
approach, i.e. attempt to actively search for incorrect facts
and either just flag them, or ideally replace them with
correct facts. Inserting or predicting a true fact however,
is vastly more difficult than ruling out improbable facts
and generally requires a large knowledge-base of true
information. A different approach is to passively monitor
inserted/updated information and regulate the introduction
of false information in the first place.

In order to perform any form of fact-checking it is necessary
to have a reference of truth. Thus it is required to either have
access to a knowledge-base of verified true facts in order to
exclude and replace mistakes or a collection of known false
facts, i.e. an anti-knowledge-base, in order to just exclude
facts. However, creating, maintaining and searching such
knowledge-bases is both difficult and expensive. This raises
the question, whether it is possible to learn facts not as col-
lection, but instead train a compact model that is capable of
predicting facts and their likelihood. A loosely related string
of research that fits this approach description are Language
Models. Language Models aim to solve a similar problem,
where instead of facts models try to predict or assess sen-
tence construction. These models learn to model natural
language by training on large quantities of text data that
serves as correct reference. Interestingly however, modern
state-of-the-art language models are learned nearly entirely
over book corpora and Wikipedia. If we assume that these
sources are largely factually accurate (Wikipedia certainly
contains mistakes, but if we assume that it is mostly correct
and mistakes do not appear across duplicates in different
articles this can be amortized) then these Language Models
were in fact trained on a factual knowledge-base. Since
modern Language Models learn dependencies through deep
contextual relationships, this raises the question whether
they implicitly acquired a contextual model for facts during
training.

Applicability of Language Models to Fact Checking

In the following we investigate this question by employing
and analyzing different state-of-the-art Language Models in
a passive fact-checking approach.

2. Related Work

The domain of automated fact-checking is currently sparsely
researched. Most of current work associated with Fact
Checking makes use of Knowledge Bases or Knowledge
Graphs to explore the whether target statements are true or
false. Vlachos & Riedel (2014) construct a labeled dataset
from data extracted by Politifact that are hand-classified as
Factual Mistakes. They propose supervised learning tech-
niques in order to learn factual classification. Ciampaglia
etal. (2015) approach the fact-checking task by investigating
correspondence between shortest paths in knowledge graphs
that represent factual relations. Another Fact Checking Sys-
tem, ClaimBuster (Hassan et al., 2017) builds a model using
a human-labeled dataset and employs several supervised
learning methods such as Multinomial Naive Bayes Classi-
fier (NBC), Support Vector Machine (SVM) and Random
Forest Classifier (RFC). All of these approaches use dedi-
cated Knowledge Bases as external structured information
for either output or learning.

Language in context of fact-checking has been previously
explored by Rashkin et al. (2017), however their approach
focuses on discerning facts such as political statements
based on their form of expression.

3. Fact-Checking Architecture
3.1. Update validation stream

Our work aims to investigate an unstructured probabilistic
setting by employing Language Models in order to surmise
whether statements are factual. Thus, we target a heuris-
tic approach to fact-checking rather than confirming actual
truth. An initial step to fact-checking using Language Mod-
els is to focus on the recognition of the factual mistakes,
rather than their rectification. We attempt to leverage Lan-
guage Models for a passive fact-checking domain such as
an update validation heuristic to some information store
(i.e. Wikipedia). The goal of a passively monitoring update
procedure is to increase the overall truth value of the infor-
mation store. In order to do so, the heuristic should allow
incorrect facts to be replaced while prohibiting correct facts
to be removed. The heuristic may be indifferent to updates
form wrong to wrong facts as this does not change the truth
value of the information store.

In order to judge the veracity of a fact we use a Language
Model to predict a facts likelihood given a context. Intu-
itively, a token with low predicted likelihood may be consid-
ered false, as it is unlikely to be consistent with the context.

Thus, given two or more choice and some likelihood dis-
tribution (based of a Language Model) we may rule out
improbable facts. This avoids making a definitive decision
about the true solution, while following the fact-checking
intuition that an unlikely choice (given alternatives) is pre-
sumably false.

Specifically we model an update stream as sequence of
sentences U = S1,5,,...,S;. Each sentence is comprised
of a single token, denoted F' for fact, and its composing
context, denotes C. Thus a sentence can be modelled
as S = C{F/_}, i.e. the substitution of a fact F' into
some blank inside the context C'. In the example sentence
”Germany won the world cup in 2014” the fact could be
F = Germany and the context C' = ”_won the world cup
in 2014”. Depending on the Language Model, the context
may be ordered or un-ordered and the position of F' may
or may not be considered (see section 4). Moreover, any
two adjacent sentences in the update stream differ only in
one token, i.e. the fact: So = S1{Fy/F,} (and therefore
Cy = ().

In order to compare sentences and validate updates we must
compute the likelihood of a proposed fact F' given some
context C: P(F|C). We calculate this likelihood using a
Language Model as described in Section 4. Note that the
likelihoods” computed by our models are not normalized
(i.e. > P(F|C) > 1) and technically are not probabilities
(rather a similarity metric), yet correspond to the same
relationship.

3.2. Static Threshold Model

Given a current state S; of the store, and some proposed
updated state So the fact-checker validates whether this
update should be legal by comparing the likelihoods of both
states. In our future analysis we treat allowed updates from
a factually incorrect to a correct state as True Positive and
allowed updates from correct states to incorrect ones as
False Positives. As previously mentioned, the decision for
updates that do not affect the truth value may be arbitrary.

An update is allowed if:

TM(S1,S2) == true

Where T'M () is a Threshold model formula that specifies
how much more likely the updated state must be. Explicitly
we initially consider 2 basic Threshold models, a relative
and an absolute Threshold respectively. As the denotations
suggest, the relative Threshold model compares the relative
differences between likelihoods:

P(F|C)

relTM £ —="2 > T
P(Fy|C)

Applicability of Language Models to Fact Checking

This model imposes a tune-able comparative Threshold T >
1 on the update, demanding that the updated state must be
T times more likely in order gauge the confidence that the
update will not replace a correct fact.

Similarly, the absolute Threshold models requires the up-
dated state to be a constant percentage 1" more likely.

absTM £ P(FQ‘C) — P(Fl‘O) >T

An absolute threshold not only imposes an increase in like-
lihood but also a minimal likelihood that the update needs
to satisfy.

The absolute Threshold intuitively reduces both False pos-
itives (true to false) and neutral updates (false to false) as
those are states are supposedly of low likelihood. It re-
quires at least the threshold of certainty in the updated state
and thus attempts to avoid allowing updates, even when
the updated state is more likely. The cost of doing so is
also incurring more False negatives, as potentially correct
updates are deemed unlikely. In comparison, the relative
Threshold may allow updates even if both states have very
low likelihood. Instead, the relative Threshold may be more
conservative when both options have high likelihood. Ef-
fectively this makes updates harder the more confident we
are in the current state. Intuitively this corresponds to the
’stakes” of updating being higher, because the relative gain
in truth value is lower. This supposedly limits false positives:
When both sentences have low likelihood we could inter-
pret it as neutral update (false to false), whereas when both
sentences are of high likelihood, one of them is more likely
correct and it is critical to avoid a mistake (true to false).
While stricter, this notion contradicts the intuition that two
highly probable “facts” may correspond to qualitatively (i.e.
Berlin vs Munich being the capital of Germany) similar
truth values. We address this issue in section 6. A mixture
of both Threshold models allows for extended fine-tuning.

3.3. Fact prediction

In an ideal scenario, Language Model methods methods
would be capable of not only identifying, but also replacing
inconsistent facts. However, Masked Language Models tra-
ditionally aim to solve the task of completing words in order
to fit a sentence structure and multiple admissible solutions
may exists. The choice that is usually committed to is the
most probable word over a continuous distribution. In the
fact checking application there is only one correct solution
and all other answers are inherently incorrect. While one
may try to predict correct facts by choosing the most likely
token for any given context, this is coupled with uncertainty,
as a lot of supposed facts” may be close in likelihood. This
paradigm rift between continuous losses for the traditional
language setting and a 0/1 loss for the fact checking domain
makes predicting a true fact risky in settings with large vari-

ance of possible answers. An active fact checking domain
should therefore be avoided.

In the following we expand on the employed Language
Models and how to derive the conditional likelihoods.

4. Language Model Background

We use two different approaches to predict whether the
updated fact is more likely that the original one given the
context of the sentence: Masked Language Models and
word embeddings.

The first approach uses a Masked Language model that
models P(F|C) directly from a sentence S = F'U C'. For
example for the sentence S = ”France won the world cup
in 20187, where F = France and C' = S\ F, the Masked
Language model will approximate P(France|C). As our
Language model, we used the state of the art model, BERT
(Devlin et al., 2018), short for Bidirectional Encoder Rep-
resentations from Transformers. BERT makes use of the
Transformer model (Vaswani et al., 2017), in order to learn
bidirectional contextual relations between words in a text
corpus. To do that, BERT uses two pre-training strategies.

1. Masked Language Model (MLM): Hide 15% of the
input tokens at random and try to predict only the
masked ones. The final hidden vectors corresponding
to the mask tokens are fed into an output softmax over
the vocabulary, as in a standard Language Model.

2. Next Sentence Prediction (NSL): To understand the
relationship between sentences, BERT pre-trains a next
sentence prediction task. Specifically, when choosing
the sentences A and B for each pretraining example,
50% of the time B is the actual next sentence that
follows A, and 50% of the time it is a random sentence
from the corpus.

Unlike other Transformer Language Models, BERT is de-
signed to pre-train deep bidirectional representations by
jointly conditioning on both left and right context in all lay-
ers.

MLM is directly applicable to our setting, whereas NSL is
more applicable to downstream NLP tasks such as Ques-
tion Answering and Natural Language Inference. Given a
sentence with masked token, i.e. C and a candidate token,
i.e. F', MLM outputs a logit corresponding to the “suitabil-
ity” of the token. We transform the logit into a likelihood
P(F|C).

The second method we employ concerns the use of
word embeddings that are derived from three different
models: GloVe (Pennington et al., 2014), ELMo (Peters
et al.,, 2018) and BERT. For each token in a sentence,

Applicability of Language Models to Fact Checking

the respective model computes a vector capturing its
semantic representation. The general idea behind using
word embeddings is to use the semantic representation
for each word in a sentence, in order to derive a semantic
representation for the context C' and the fact F'. The end
goal is to approximate P(F|C'), using those embeddings.

We use multiple models that learn different vector represen-
tations and use the produced word embeddings to compare
their performance.

1. GloVe: The GloVe emdeddigs that we use in this
project were trained on CommonCrawl and contain
over 1 million unique vectors. Given a sentence
s = [t1,t2,...,t,] and a target token ¢;, GloVe vec-
tors are obtained using two different methods:

(a) trying to predict the neighbor tokens [t;, .., t;4]
in a certain window w given a target token ¢; in a
sentence. This approach is called the Continuous
Bag of Words Model.

(b) trying to predict the target token ¢; given the
neighbor tokens [t;, .., t; 1] in a certain window
w. This approach is called the Skip Gram Model.

In our project we used pre-trained vectors obtained
from the Skip Gram model. It is important to note
here that each token has exactly 1 300-dimensional
word embedding, which is context independent. For
example, the word embedding for the token “bank”
would be the same in the sentence: "The bank is closed
today” and in the sentence: "I took a walk by the bank
of the river”.

2. ELMo: The ELMo embeddings that we use are the
1024-dimensional learned vectors of the last layer of
a deep shallow bidirectional language model (biLM),
which is pre-trained on a large text corpus [maybe
here be specific — don’t know where exactly they were
pretrained]. ELMo’s model has two different LSTM
layers; the first reads the input tokens from left to right
and the second from right to left. The word embeddings
obtained by ELMo are contextual, deep and character
based. Given two different contexts C; and C5 and a
target token ¢;, then the word embedding v;; obtained
from C; for t; is different than the word embedding
vt obtained from Cs for ¢;. For example, the word
embedding for the token “bank” would be different
in the above example. Also, ELMo’s character based
vector representations allow it to obtain embeddings
for out-of-vocabulary tokens unseen in pre-training.

3. BERT: BERT’s model is similar to ELMo, in the sense
that it produces deep and contextual word embeddings,
but with a few defferencecs. It is important to note

that in contrast to ELMo, which obtains the embed-
dings from a shallow bidirectional LSTM, BERT gets
the embeddings by a truly bidirectional Transformer
model. In ELMo’s architecture, neither of the two
LSTMs takes both the previous and subsequent tokens
into account at the same time. Also, BERT uses word-
pieces (e.g. playing — play + ##ing) instead of words.
This is effective in reducing the size of the vocabulary
and increases the amount of data that is available for
each word. The embeddings that we get are the 1024-
dimensional learned vectors of the last layer of this
deep bidirectional Transformer model.

After we obtain the word embeddings for each token
in the Context C' of the input sentence and the fact
candidate tokens ¢ 7, and ty,, we need to find a way to
decide which of the fact candidates fits “better” in C.
Assume that C' = [tq,t2,...,t5]. Then the vectors of
each token in the context would correspond to the matrix
Me = [v1, v, ..., vg], where for each 1 < i < k, v; corre-
sponds to a vector of dimension d € {dgiove; deimos Avert
obtained by model m € {glove,elmo,bert}. Also the
vectors of the candidate tokens ¢, and ¢, are denoted by
Vfq and Vfq-

Define as ac = % Zle v; the d dimensional vector ob-
tained by taking the average of the vectors in M. Intu-
itively, this vector represents the average contextual mean-
ing of the context C' in the d dimensional embedding space.
To model how well a candidate token”fits” in a context C,
we measure the cosine angle between vy and ac. The cosine
of the angle would measure how similar those two vectors
are. A small angle signifies high similarity and a large angle
low similarity. Define a similarity function

_ VYy-ac
s, a0) = o Tac]

which gives the cosine similarity between two vectors. The
domain of s is [—1, 1]. Thus to turn the cosine similarity
between two vectors into a valid probability function, we
define the probability of two vectors being similar as

P(g,ac) = "0l
Since we have a measure of the probability of a candi-
date token ¢; with a vector v; belonging in a Context C
with vectors M, we can now find the best ”suited” can-
didate vector among choices ¢y, and t7,. Intuitively, if
P(vy,,ac) > P(vs,,ac), then ty, "fits” better in the con-
text C' than t;,. We use the threshold models outlined above
in order to increase the confidence in updates.

Applicability of Language Models to Fact Checking

5. Evaluation

In order to evaluate the utility of language models on our
fact-checking task we created a small structured (see section
8. Limitations) data-set of sentence pairs. The sentences
come from random fact domains (sports, countries, lan-
guages, etc.) and among every pair one is correct. We
measure precision and recall based on the incurred true pos-
itives and false positives (as outlined above). As unified
metric we compute the Fp 5 score, a biased harmonic mean
between precision and recall favoring precision. Results
were recorded for Bert MLM as well as the three embed-
ding models using Bert, GLoVe and ELMo over both the
relative and absolute threshold model with varying threshold
parameters.

Figure 1 shows the precision (a) and recall (b) of the embed-
ding models using the relative threshold.

Precision (relative threshold)

1.025 1.05 1.075
Threshold

Precision

mm glove
mmm elmo

mm bert
[——

(a) Precision for Embedding models

Recall (relative threshold)

1.025 1.05 1.075
Threshold

(b) Recall for Embedding models

0.7 mmm glove
s elmo
0.6 mmm pert

0.5

Recall

0.3
0.2
0.1

e
1.1

0.0

Figure 1. Embedding based models using relative Threshold

The absolute Threshold model shows similar trend in
recall decrease, but lower recall and higher precision than
the relative Threshold model. This is expected, as the

absolute model imposes a minimum confidence in order to
update which naturally reduces both true and false positives.
However, precision increasing implies that more false than
true positives were filtered, aligning with the intuition that
false facts generally have low probability. ELMo’s peak
precision for the absolute model was reached at T=0.025
with 78% precision and 41%recall, whereas GloVe reached
85% precision with 11% recall at T=0.1.

Bert MLM performed competitively over the data-set, but
was only applicable to a subset of examples (73%), due to
lack of dictionary representations (see Limitations). With
a relative threshold T=1 (equivalent to absolute T=0) the
model had 71% precision and recall. For the relative TM
precision and recall scaled from 72% to 68% and 45% to
36% respectively (for T=1.025 to T=1.1). Increasing Thresh-
olds did not benefit the precision, indicating that the true
positives were based off smaller confidence margins than
the false positives. For the absolute TM precision and recall
scaled from 68% to 73% and 32% to 22% respectively (for
T=0.05 to T=0.2).

5.1. Discussion

The goal of applying an update heuristic is to purify an
information store. Thus, precision is the most important
metric as it determines the truth percentage of the store in the
lime. In expectation the truth value of the information store
will converge to the precision. Recall measures how much
positive change is permitted by the heuristic, effectively
governing the speed of convergence.

Increasing Thresholds had marginal effects on precision, yet
drastically decreased recall, suggesting that smaller Thresh-
olds are more favorable. The decrease in recall implies
that correct and false facts were often distinguished only
by small likelihood margins. Relative Thresholds generally
outperformed absolute Thresholds, however it should be
noted that absolute thresholds usually demand higher mar-
gins. The larger the margin the more confidence we put in
our update decision. While ELMo had the largest peaks
(in both precision and recall) as well as the highest preci-
sion, its recall drops significantly faster than the measured
recall for GloVe. This indicates that GloVe’s true positives
are based off larger margins and hence elicit more stability.
Consequently, on a larger or different data set GloVe might
generalize better.

While the MLM approach (Bert) had much better recall
at higher Thresholds compared to the Embedding models
it suffers from limited applicability. However, embedding
based models ignore the order of the fact within the context
and potentially lose predictive power by partially disregard-
ing the sentence semantics. In contrast, the position of the
fact matters for the Bert MLM approach as its embeddings

Applicability of Language Models to Fact Checking

are deeply bidirectional. This to an extent explains the poor
performance of the embedding based Bert model.

6. Dynamic Threshold Model

As our experiments results indicate, recall decreases lin-
early with increased Thresholds. While higher Thresholds
supposedly reduce the number of False Positives they simul-
taneously reduce the amount of allowed True Positives, i.e.
correct, beneficiary updates. Thus, the observed Precision
of our models increased just very marginally, if at all with
growing Thresholds. Consequently overall, the Fj 5 score
decreases. This suggests that lower Thresholds are gener-
ally more efficient, as an update heuristic should also allow
positive updates in order to be useful. A trivial, always safe
heuristic would be to disallow any updates while making no
progress.

An intuitive approach to compromise between avoiding
False Positives, yet lessening the impact of high Thresh-
olds is to employ dynamically scaling Threshold models.
Ideally, for each update it were possible to derive an in-
dividual threshold. The absolute Threshold model already
captures a minimal confidence in the update, whereas the rel-
ative Threshold model captures an increase of “truth value”.
However, as discussed in section 3.2 a relative Threshold
model will judge two highly probably states more strictly,
which may be counterproductive if these in fact correspond
to ’similar” results. Note, that this interpretation of similar
is entirely qualitative and not absolute truth. For example, it
may be argued that mistaking Munich for the German capi-
tal instead of Berlin is a less grievous mistake than choosing
Athens as the capital. An approach to capture this relation
is to scale Thresholds based on the similarity between two
compared states. This effectively attempts to treat the truth
value of facts as continuous space rather than through a
definitive 0/1 loss function.

We capture this qualitative truth model for the embedding
based language models. If two sentences are qualitatively
similar we conjure that the embeddings that the language
model produces are similar as well. Intuitively, qualitatively
”similar” proposed facts should have similar embeddings as
they appear in shared contexts and thus are likely to have
joint features. In the high dimensional vector space that the
embedding representation spans the similarity between two
tokens can be interpreted as the angle between their respec-
tive embeddings, allowing us to use the cosine similarity
between the latter as a similarity metric. Using this, we can
scale the Threshold inversely proportional to the similarity.
By assumption False Positives over ”very similar” tokens in-
cur less loss than False Positives over very different tokens.
Thus, for tokens with low similarity we raise the Threshold
as we require more certainty in order to confidently allow
the risk of incurring a False Positive.

The dynamically scaled Threshold model is captured by
modifying the Threshold T from previous models as follows
(exemplary for the relative TM):

P(F
dynTM = M >

w-t+1
P(F1|0)

where t is the Threshold offset of T and w scales inversly to
the normalized cosine similarity between the Embeddings
(denoted as E[]):

cossim(E[Fy], E[F3]) + 1

t=T-1 w=1-

The dynamic approach was motivated to reduce the average
Threshold in order to gain higher recall. The trade off for
this is to incur potentially more False Positives with the intu-
ition, that many of these False Positives are benign mistakes.
Below we compare the performance of ElImo embeddings
using the static relative Model (dashed lines) and the dy-
namic relative Model (solid line). For both cases we report
results for varying Thresholds - in the case of the dynamic
model this Threshold is the upper bound.

ELMo

0.8

0.7

0.6
0.5

0.4

Metric
— precision
recall
02 — f05
Method
0.1 — weighted
--- relative

0.3

1.00 1.02 1.04 1.06 1.08 1.10
Threshold

Using the dynamic Threshold model significantly increases
recall while slightly improving precision compared to the
static model. The Fj 5 score is now approximately con-
stant, indicating that the dynamic model linearly trades off
precision and recall (ratio 2:1) rather than suffering a col-
lapse with increased Thresholds. While recall is expected
to rise with dynamic thresholds as we reduce the Threshold
on average, a rise in precision indicates that the scaling of
thresholds did not allow more False Positives than previ-
ously. This is surprising given that the premise of the dy-
namic model was to potentially allow more False Positives
but limit the holistic gravity of the mistakes. Consequently
this suggests, that even for the absolute loss interpretation it
is recommended to use the dynamic Threshold approach.

Applicability of Language Models to Fact Checking

7. Limitations

While the obtained results are promising, there are several
functional limitations that restrict the straight-forward ap-
plication of this approach. For one, our sentence model
assumes that facts are single token which is a problem for
MLM models. In Bert MLM multiple masked tokens are not
possible and masking just parts of a multi part token creates
different contexts that affect the conditional probabilities
(effectively introduces a bias). Another issue are limited dic-
tionaries associated with the Language Models. Language
models learn relationships over a fixed sized defined set of
words of a language (English in our case), yet facts may
take on arbitrary forms such as names. These tokens have
no direct correspondence to an embedding but are broken
up into syllables, resulting in a loss of meaning. Embedding
based models are more flexible to handling this as they are
often character based, but the questions remains whether the
decisions are meaningful. Similarly to unknown tokens, rare
tokens can affect the veracity of the updates. Rare tokens
will have appeared in fewer contexts, resulting in lower em-
bedding relations within the language model. Consequently,
arare fact may be deemed unlikely and discarded regardless
of truth value.

A common problem in more general settings, unlike our
constructed test set, is the sufficiency of context and/or the
substance of the fact. For example, a sentence like "He
was the best” both lacks definition of the fact as well as
supplementary context. Updates to such sentences require
a larger context, i.e. an enclosing paragraph. Paragraph
based approaches can be starting points for extending fact-
checking confidence, but are not immediately applicable to
our sentence model.

A concern that we partially addressed in the qualitative
truth setting is the generalization or specialization of facts.
Updates that generalize, such as “Berlin is the capital of
Brandenburg” to ”Berlin is the capital of Germany” are not
factually incorrect, yet may be allowed or disallowed at
arbitration (likewise for the reverse specialization case).

Lastly, validating the accuracy of the language model based
fact-checking approach is limited by the existence of suit-
able, labeled data, stemming both from the current lack of
practicability as outlined above as well as the lack of such
data sets. On a large unlabeled Wikipedia update stream
data-set the Bert MLM model was applicable to only 25%
of the data. With the (generous) assumption that most up-
dates were from wrong to correct facts the MLM model had
a 55% precision (not accurate as the assumption is incor-
rect). Yet, a large quantity of these decisions could have
been arbitrary, as the sentences had non-practical forms (i.e.
random names, rare tokens, lack of context and substance).
Evaluating the performance of our explored models on a
larger, dedicated data-set would be useful.

8. Conclusion

In this project we examined whether Language models can
be used for Fact Checking by employing different existing
pre-trained language models for an update stream based
threshold model. We considered a Masked Language Model
(BERT) based approach as well as a word embedding based
approach comparing GloVe, ELMo and BERT embeddings.
Our results show, that in expectation, the models can be
used in order to purify the average truth in our dataset. We
outlined the (dis-) advantages of different threshold models
and confirmed these intuitions by measuring both precision
and recall over a small dedicated data-set. The approaches
we examined are surprisingly successful (with precision
ranging from 68% to 85%) in identifying factual mistakes,
considering the language models were not subject to any
additional training. While we are carefully optimistic about
the results, there remain several limitations to the appli-
cability of the approach. We believe that a probabilistic
framework based on Language Models could be improved
further, in order to materialize into a concrete autonomous
Fact Checking System. Some future work could address pre-
training of the Language Models on a News Corpus (com-
pared to our current Models which are pre-trained mostly
on Wikipedia. Another issue to address is the long-tail prob-
lem which arises from the fact that Language Models learn
the token distributions of the common topics included in
the pre-training dataset rather than rare tokens. In order to
address such an issue, one would either require an external
Knowledge Base or a method capable of scaling training to
even larger information sets such as the entire web.

References

Ciampaglia, G. L., Shiralkar, P., Rocha, L. M., Bollen,
J., Menczer, F., and Flammini, A. Computational
fact checking from knowledge networks. PLOS
ONE, 10(6):1-13, 06 2015. doi: 10.1371/journal.
pone.0128193. URL https://doi.org/10.1371/
Jjournal .pone.0128193.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Hassan, N., Zhang, G., Arslan, F., Caraballo, J., Jimenez, D.,
Gawsane, S., Hasan, S., Joseph, M., Kulkarni, A., Nayak,
A. K., et al. Claimbuster: The first-ever end-to-end fact-
checking system. Proceedings of the VLDB Endowment,
10(12):1945-1948, 2017.

Pennington, J., Socher, R., and Manning, C. Glove: Global
vectors for word representation. In Proceedings of the
2014 conference on empirical methods in natural lan-
guage processing (EMNLP), pp. 1532-1543, 2014.

https://doi.org/10.1371/journal.pone.0128193
https://doi.org/10.1371/journal.pone.0128193

Applicability of Language Models to Fact Checking

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., and Zettlemoyer, L. Deep contextualized
word representations. arXiv preprint arXiv:1802.05365,
2018.

Rashkin, H., Choi, E., Jang, J. Y., Volkova, S., and Choi,
Y. Truth of varying shades: Analyzing language in fake
news and political fact-checking. In Proceedings of the
2017 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 2931-2937, Copenhagen, Den-
mark, September 2017. Association for Computational
Linguistics. doi: 10.18653/v1/D17-1317. URL https:
//www.aclweb.org/anthology/D17-1317.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, £.., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 5998-6008, 2017.

Vlachos, A. and Riedel, S. Fact checking: Task definition
and dataset construction. In Proceedings of the ACL 2014
Workshop on Language Technologies and Computational
Social Science, pp. 18-22, 2014.

https://www.aclweb.org/anthology/D17-1317
https://www.aclweb.org/anthology/D17-1317

