
CS 6241 Final Report

George Karagiannis (gk446) Himank Yadav (hy539)

May 21, 2020

1 Introduction

Unfortunately, there is an exciting and prevalent problem that our society cur-
rently faces; misinformation about COVID-19. Given the fact that the depth
of our general knowledge about the pandemic is so limited and the rapid pro-
gression of affairs, the amount of false claims concerning the new pandemic is
a real concern. We propose a novel approach in order to mitigate this problem,
by applying automated Fact Checking to claims concerning the virus. In order
to tackle this difficult and widespread problem, we apply numerical methods
and language models. Early results indicate that we can achieve high precision
through our anti-knowledge base of COVID-19 facts, however, we cannot make
strong guarantees on recall due to the nature of this problem. Overall, we show
whether we can use Language Models fine tuned on generic Natural Language
Inference tasks to Fact Check claims about the Coronavirus.

We have released a Web interface of the proposed system, which can be found
here: https://akb-demo-271613.appspot.com/. Note that the web interface
uses a slightly older version of the AKB with less entries than the one presented
in this report.

2 Problem Description

The scope of this problem revolves around data collection, analysis and predic-
tion. The goal of this project is to conduct automated Fact Checking on unseen
generic claims related to COVID-19 posed in natural language. Thus, we expect
to classify a new claim as “false” when it is factually incorrect and also provide
a justification for our prediction.

First, we created a new dataset that contains information about the virus by
combining data from the Google Fact Checking API and the Poynter COVID-19
Database. Both of these sources contain human-labeled data from claims posed
on social media and the Web in general. This real world dataset consists of
roughly 4100 false claims about COVID-19.

Second, we apply a probabilistic model, which approximates the probability
that a new claim is incorrect. One of the difficulties we face is that claims
which need to be checked are posed in natural language and are inherently
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unstructured and hard to parse. For example, differentiating between claims
with few differences structurally and big differences semantically has always
been very challenging for NLP researchers. The claims “There is a vaccine for
COVID-19” and “There isn’t a vaccine for COVID-19”, are hard to tell apart,
but necessary for solving such problems.

3 Related Work

We plan on using BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. BERT was proposed by Devlin et. al. in 2018 and
gained remarkable prominence due to its results on most NLP tasks, beating
existing state-of-the-art methods. Under the hood, BERT uses the Transformer
model and learns bidirectional-contextual relationship between words in a cor-
pus of text. The original paper introduced two novel pre-training objectives:
masked language model and next sentence prediction. In order to train the
Masked Language Model, BERT’s training hides 15% of the input word to-
kens in a randomized order and then trains by trying to predict these masked
tokens. These latent vectors which represent the masked tokens go into an
output softmax layer over the entire training vocabulary. A big difference as
opposed to traditional language models is that BERT does not estimate the
conditional probability of the masked word given a directional context. More-
over, BERT also pre-trains on the next sentence prediction task, which allows
it to understand temporal relationships between two given sentences. The orig-
inal BERT model is pre-trained on book corpus ( 800 million words) [9] and
English Wikipedia corpus ( 2500 million words). A big difference from prior
state-of-the-art approaches, such as GPT and ELMo [7] is that BERT is pre-
trained on bidirectional representations with a joint left and right conditioning
across all layers. Even though the underlying architecture is common across all
three approaches and is based on the transformer, BERT is able to significantly
outperform the existing state-of-the-art approaches.

A BERT-like approach called RoBERTa proposed by Liu et al [5] achieves
SOTA performance on most downstream classification tasks. RoBERRTa fol-
lows the same architecture as BERT with the exception of the NSP pre-training
task. The main reason RoBERTa achieves a better performance lies in the larger
pre-training corpus used, which comprises of 160 GB of text, contrary to 16 GB
of text used in BERT.

The Multi-Genre Natural Language Inference (MultiNLI) corpus [8] is a
labeled sentence pair dataset proposed by Williams et al. in 2018 for under-
standing textual entailment and contradiction. The corpus is modeled on the
SNLI corpus [1], but differs in that it covers a range of genres of spoken and
written text and supports a distinctive cross-genre generalization evaluation.
The MNLI corpus contains 433 thousand pairs of sentences and is almost two
orders of magnitude larger than all similar corpuses. Experiments with different
models trained on NLI indicate that MNLI is a harder dataset than SNLI, as it
includes ten distinct genres of written and spoken English, making it possible
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to evaluate systems on nearly the full complexity of the language. The authors
baseline a variety of natural language inference models, including Continuous
Bag of Words (CBOW), (Bi)LSTM and Enhanced Sequential Inference Model
(ESIM) models. The authors report that at the time of writing, ESIM achieves
the best performance among the neural network models and also does well on
downstream natural language inference tasks. However BERT-based models
like RoBERTa [5] now achieve SOTA performance on MNLI.

Additionally, previous work on “Anti-Knowledge Base” (AKB) [4] proposed
by Karagiannis et al. introduces the use of a Database containing false claims,
which can be used for Automated Fact Checking. The reasons of using an AKB
are twofold. First, there do not exist any Knowledge Bases, which contain infor-
mation about COVID-19 and most work by professional fact checkers is focused
on finding mis-information concerning the virus. Second, a match (entailment)
between an AKB entry and a test claim, will guarantee the untruthfulness of
that claim, whereas the absence of a match does not guarantee truthfulness.

4 Approach

Consider the following setup. We have constructed an AKB, which consists of
a set of n entries {ei}ni=1 of sentences in natural language containing factual
mistakes. For a given test claim c, the goal it to check if c is a factual mistake.
We denote as ej → c if ∃ 1 ≤ j ≤ n such that ej entails c and as ej 6→ c
otherwise.

1. We make use of existing research on Fact Checking, where we construct
an “Anti-Knowledge Base” (AKB) [4], which contains false claims about
COVID-19. Since the AKB contains factual mistakes, if a new sentence
(which we want to fact check) can be logically derived from any of the
claims in the AKB, then this sentence also constitutes a factual mistake.
The fact that the majority of the hand-annotated COVID-19 related data
contain false claims, motivated us to create an AKB. It is important to
note that the goal of our approach is to detect factual mistakes but make
no attempt at classifying a claim as correct. This means that for 1 ≤ j ≤ n
if ej → c, then we classify c as a mistake, but if ej 6→ c, we do not classify c
as neither a mistake nor a correct statement. This is justified by the scope
of our project, which revolves around finding mistakes about COVID-19.

2. We model the prediction of factual mistakes as a Natural Language Infer-
ence (NLI) task, where the goal is to determine whether a “hypothesis” is
true (entailment), false (contradiction), or undetermined (neutral) given
a “premise”. In our use case, the AKB will contain a set of premises and
a new claim (which we want to fact check) will be a hypothesis. If the
hypothesis is entailed by any of the premises, then this hypothesis will
be classified as a factual mistake.

3. We enhance the capability of the pre-trained BERT model by further fine-
tuning it on the MNLI corpus. We will use this fine-tuned model to predict
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Table 1: Examples of Entries obtained from GFC API and Poynter

Entry Rating

Coronavirus was infecting people in the US
since November 2019

FALSE

The coronavirus was created and patented by
an American lab two years before the pan-
demic

FALSE

U.S. President Donald Trump implied the
Obama administration left behind ”bad,”
”broken,” and ”obsolete” COVID-19 diagnos-
tic tests

TRUE

A charitable hospital in Pakistan charged pa-
tients for novel coronavirus tests

MISLEADING

textual entailment for a new COVID-19 related claim.

4. To evaluate our method, we construct a test set for evaluation from two
primary real-world sources. Our AKB contains false claims, but we also
need true ones. To do that, we use again the Google’s Fact Checking API
and the the Poynter COVID-19 Database to retrieve the few truthful
sentences about COVID-19 that we have not incorporated in our training
process. Our evaluation criteria is binary to test the performance of our
fact-checking model, which validates whether a given test statement is
factually incorrect. Due to the nature of the problem, our primary goal
is to achieve a high precision. However, we expect our system to have
low recall, because of limited dataset. Precision accurately represents the
quality of our fact-checking approach since we’ll be able to accurately
detect false sentences while calculating recall depends on the vast number
of topics the sentences can include, which is beyond the scope of this
project.

4.1 Dataset Description

Using as main sources the Google Fact Checking API and the Poynter Database
both queried on COVID-19, we were able to obtain a total of 5320 claims posed
in Natural Language along with the “rating” from the professional human fact
checkers. Unfortunately, there does not exist a single schema for these ratings,
which usually vary from “TRUE”, “PARTLY TRUE”, “FALSE””, “PARTLY
FALSE”, “MISLEADING” and variations of those. Table 1 shows some ex-
amples of claims that are obtained from the two sources mentioned above. To
create our AKB, we only keep claims with “FALSE” rating. Overall our AKB
consists of 4139 claims, with an average length of approximately 16 words per
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claim. We are also interested in claims with “TRUE” rating, which will consti-
tute part of our test set, when we evaluate our model. We were able to extract
32 truthful claims, with an average length of 19 words per claim. As stated
above the number of false claims about COVID-19 is much greater than the
number of true claims, which justifies our choice of using the AKB approach
described above.

As we can see, the main limitation of the dataset is its size. We believe that
4139 AKB entries is probably not enough to cover the whole spectrum of all
possible COVID-19 related claims. Hence, the recall of the system is expected
to be low, since no premises will exist in the AKB to entail some of the test
claims. Because of this lack of coverage, precision of our system should be the
main metric of evaluation of our system. Despite its small size, we think its a
reasonably-sized dataset to conduct experiments, such that we can evaluate the
feasibility of our approach in terms of precision.

Furthermore, we plan on creating a test set which consists of the 32 truth-
ful claims described above and 50 randomly selected factually incorrect claims
randomly selected from the AKB. In order to have a balance of labels (“TRUE”
and “FALSE”) we will also manually add 18 truthful claims derived from trust-
worthy sources. As a result, our test set will be comprised of total of 100 claims
with 50 truthful and 50 factually incorrect.

4.2 Data Analysis

The Data Analysis part of the project concerns fine turning RoBERTa on the
MNLI dataset and being able to predict textual entailment by using our AKB as
a set of premises and the test claims as hypotheses. To fine tune on NLI, we fit
a feed-forward Neural Network trained on MNLI, which contains approximately
500k premise-hypothesis pairs. The trained model, is used to predict textual
entailment, as described above.

Despite fine-tuning, we use different word/sentence embedding approaches
in order to find the top k most similar AKB entries for given a hypothesis.
We experiment with different alternatives like Glove [6], BERT [3], Universal
Sentence Encoder (USE) [2] and ELMo [7].

4.3 Numerical Method

As discussed in the previous section, we fine-tune the BERT model and use word
embedding for sentences. However, our next big challenge was to accurately fact-
check in a reasonable amount of time. A naive approach of running inference on
every pair of sentences is infeasible given the size of our corpus. To get around
this, we compute a multi-dimensional embedding representation of our corpus
and computing cosine similarities of input sentences against our corpus.

cos θ =
~a ·~b
‖~a‖‖~b‖

=

∑n
1 aibi√∑n

1 a
2
i

√∑n
1 b

2
i
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where

~a ·~b =

n∑
1

aibi = a1b1 + a2b2 + · · ·+ anbn

is the dot product of the two vectors.
We then select the top k embeddings on which we run the downstream

inference task. The word embeddings capture the semantic meaning of a given
claim and taking the cosine similarity between such claims provides us with a set
of most similar claims. Amongst this set, by selecting the top k, we intuitively
select the top k most-related claims.

It is important to have a reliable similarity metric, because not all AKB
entries are relevant to a test claim and it is computationally wasteful to predict
textual entailment for all AKB entries, test claim pairs. Our preliminary stud-
ies suggest that this approach works well, since the pair of sentences used in
comparison have their distances bounded in the embedding space. This allows
us to offer fact-checking prediction in a feasible manner.

The main difference between Glove word embeddings and BERT and ELMo
is that Glove embeddings are context independent and do not account for the
context of the word in a sentence. The embedding vector produced by Glove
embeddings discounts contexts such as the location of the word in a given sen-
tence and its various potential meanings. A big potential downside here is that
the same word can be used in multiple contexts in a given sentence, but Glove
would not be able to capture the appropriate meaning which would be highly
dependent on the context and word location. ELMo and BERT on the other
hand generate context-dependent word embeddings, and can therefore generate
varying word embeddings depending on the context of a word in the given sen-
tence. For example, in the sentence ”he went to the bank by the river bank”,
the word ”bank” in the first half of the sentence would represent a financial
institution, whereas in the latter half of the sentence would represent the edge
of a river.

In contrast to Glove embeddings, which are produced by a word-based model,
ELMo embeddings are produced by character-based models and use character
convolutions. ELMo embeddings are context-dependent because their design
is based on underlying bi-directional LSTM language models. Additionally,
since ELMo embeddings are character-based, ELMo can handle words that are
beyond the training vocabulary.

Finally, BERT further extends the bi-directional nature of ELMo by training
on sub-words, thus striking a good balance between characters and word-based
representations. This also allows BERT to handle out-of-vocabulary cases,
which word-based models suffer from. Additionally, BERT is trained on an
underlying transformer architecture, which has proved superior than LSTMs.
BERT uses a masked language model where it arbitrarily masks a certain per-
centage of words in a sentence during training and learns these representations,
thus allowing BERT to perform extremely well in context-based situations.
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Table 2: Examples of Predictions

Test Sentence Original
Rating

Prediction AKB Entry

The quarantine in Italy
showed more clean waters
in Venice with fish and a
dolphin.

FALSE FALSE The canals in Venice
have become cleaner after
the shutdown, attract-
ing schools of fish and
dolphins.

Washing your hands helps
prevent the spread of
COVID-19.

TRUE FALSE Gargling salt water can
protect against against
COVID-19 by washing
down the virus into the
gut.

Chlorine dioxide cures
COVID-19.

FALSE FALSE Chlorine dioxide, or
Miracle Mineral Solu-
tion (MMS) can cure
Covid-19.

Garlic can cure patients
infected with the coron-
avirus

FALSE FALSE Coronavirus can be cured
by sniffing clove and cam-
phor and by drinking wa-
ter, the virus will go to the
stomach and the acid in
the stomach will kill the
virus.

5 Experimental Results

5.1 Setup

In this section, we evaluate our model through different experimental results.
Our experimental setup is as follows. We have an AKB which contains 4139
factual mistakes. We have also collected 50 truthful claims. We select 50 random
entries from the AKB along with the 50 truthful claims, we create a test set,
consisting of 100 entries. Hence, the AKB used for this experiment will consist
of n = 4139 − 50 = 4089 entries. Our main goal is to measure precision and
recall of our system by attempting to classify the claims in the test set as factual
mistakes. In this experiment we use k = [5, 10, 20] as part of the top k most
similar AKB entries given a test claim (Section 4.3). We report performance
for these different values of k, in terms of precision, recall and F-1 score.

As stated in Section 4, our model classifies a test claim c as a factual mistake
if ej → c for 1 ≤ j ≤ n but makes no classification attempt on claims where
ej 6→ c.
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Let a be the number of factual mistakes in our test set (50 in this case).
Let b be the total number of claims, which were classified as factual mistakes
from our model. Let c be the number of claims which were classified as factual
mistakes from our model and have an initial rating of “FALSE”.

We measure precision as c/b, where c is the number of correct classifications
and b is the total number of classifications. We measure recall as c/a, which is
the number of correct classifications over the total number of mistakes in the
test set (a).

5.2 Analysis

In our experiments we use different methods to extract sentence embeddings
from the AKB and test set. For each entry in the AKB and test set we extract
sentence embeddings by making use of different methods, like GloVe, RoBERTa,
ELMo and USE. As stated above, by extracting sentence embeddings from the
entries, we capture their semantic meaning and hence we can approximate the
similarity between AKB and test sentences. As described in Section 4.3, for each
entry in the test set, we select the top k most similar AKB ones, where similarity
is measured as the cosine of the vectors in the d-dimensional space. Having a
good quality of contextual vectors is a really important piece of our method,
as for a given test sentence, the top k AKB premises need to be relevant to it,
such that our NLI model can predict entailment, if the test sentence constitutes
a factual mistake.

The need for accurate contextual vector representation motivated us to use
many different models. It is worth noting that USE is the only encoder that
yields sentence embeddings, which is contrary to the other models, which pro-
duce word embeddings. This means that for GloVe, RoBERTa and ELMo, the
sentence embeddings for the AKB and test entries are calculated as the mean
vector of the words in the sentence (i.e mean-pooling). By doing that, we trans-
form a n × d matrix into a d dimensional row vector, where n is the number
of words in the sentence. This operation distorts some of the original context,
but is still deemed as a representative representation of the whole context of the
sentence. We can see from Figure 1 that the recall of USE is larger that other
approaches, while the precision is also among the highest. As a result the F-1
score reported is the highest for both values of k, which means that the yielded
sentence embeddings capture the context adequately allowing us to correctly
approximate similarity in the d-dimensional space.

As stated in Section 4.3 RoBERTa and ELMo constiture SOTA models that
compute word embeddings, which depend on the neighbouring context in a
bidirectional fashion. Also both of these models solve the Out-Of-Vocabulary
problem, because they use character embeddings (ELMo) and sub-word infor-
mation (BERT). Hence, we expected their recall performance in our similarity
task to be better than reported in Figure 1.

Furthermore, our decision of using the top k most similar AKB entries as a
set of premises and not the whole AKB turned out to benefit the performance
of our approach as far as precision is concerned. Using the top k similarity ap-
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Figure 1: Precision, Recall and F-1 Score for different models with and values
of k.
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proach not only did it make our method salable and practical in terms of runtime
and resource consumption, but it also increased the precision of RoBERTa in
the NLI task, as we avoid trying to predict entailment for sentence pairs that
do not have any contextual similarity. To be more precise, tackling NLI is a
very tough task, and by limiting the number of unrelated sentence pairs (i.e
AKB and test entries), we “help” the model achieve higher precision. This can
be clearly shown in Figure 1, where the average precision is 84% for k = 5 in
contrast to a precision of 79% and 76% for k = 10 and k = 20 respectively.
This is an indication of an inversely proportional relationship between k and
the precision.

We can see that all of the approaches achieve high performance but struggle
in terms of recall. As discussed above, low recall was expected, since is inherent
to the nature of our dataset. Having a dataset of approximately 4100 entries
does not allow any model to cover a wide range of sentences related to COVID.
This was also noticed in the web interface, as possible number of statements
about the virus is much larger than the size of our AKB. Thus, the low recall
can be attributed to the lack of a large dataset and could be solved if one collects
more False sentences about the Coronavirus. We expect that a larger dataset
with the existing method, will be able to adequately cover a wide variety of
claims while retaining the current high precision.

Finally in Table 2, we show some examples of our Experimental Results. We
show examples of correct and incorrect predictions of our model. We can see
that our model can generalize quite well as the AKB entries which entail the
Test sentences are different in structure and tone but similar in meaning. In
the correct predictions we are able to classify a test sentence as incorrect and
give an AKB entry as a justification of our prediction. Mistakes occur when we
classify a test sentence as incorrect, when it’s original rating is “TRUE”.

6 Conclusion

In this project we tried to tackle a tough but very important problem that our
society faces today, due to the large amount of misinformation concerning the
COVID-19. We proposed a novel method, utilizing SOTA Language Models
in the Natural Language Inference task and the concept of an Anti Knowledge
Base. We managed to show that even by having a relatively small size of an
AKB, automated Fact Checking of COVID-19 is possible and our proposed
approach achieves very high performance with a maximum precision of 88%.
We think that the results are significant in terms of sufficiently preventing the
misinformation about COVID. We are also happy to provide a web interface
where our method is readily available for everyone to use and Fact Check any
spurious claims that they came across the Web.
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